171 research outputs found

    Singularity computations

    Get PDF
    An approach is described for singularity computations based on a numerical method for elastoplastic flow to delineate radial and angular distribution of field quantities and measure the intensity of the singularity. The method is applicable to problems in solid mechanics and lends itself to certain types of heat flow and fluid motion studies. Its use is not limited to linear, elastic, small strain, or two-dimensional situations

    Development of the program SPECEL: A special element for elasto-plastic crack tip analysis

    Get PDF
    Theory is stated in terms of increments of displacement and stress, and of instantaneous or accumulated values of stress. The equilibrium equations, in the absence of body forces, are written, along with constitutive relations for plane strain

    Research priorities for advanced fibrous composites

    Get PDF
    Priorities for research in advanced laminated fibrous composite materials are presented. Supporting evidence is presented in two bodies, including a general literature survey and a survey of aerospace composite hardware and service experience. Both surveys were undertaken during 1977-1979. Specific results and conclusions indicate that a significant portion of contemporary published research diverges from recommended priorites

    Experimental and analytical strains in an edge-cracked sheet

    Get PDF
    Elastoplastic strain distribution in edge-cracked metal sheets determined by optical interference and moire technique

    Analysis of notches and cracks - A numerical procedure for solving the equations of elasto-plastic flow in three independent variables

    Get PDF
    Equations for solving initial and boundary value problems in elastoplastic flow in longitudinally stressed, axisymmetric notched rod

    Interactive program for analysis and design problems in advanced composites technology

    Get PDF
    During the past year an experimental program in the fracture of advanced fiber composites has been completed. The experimental program has given direction to additional experimental and theoretical work. A synthesis program for designing low weight multifastener joints in composites is proposed, based on extensive analytical background. A number of failed joints have been thoroughly analyzed to evaluate the failure hypothesis used in the synthesis procedure. Finally, a new solution is reported for isotropic and anisotropic laminates using the boundary-integral method. The solution method offers significant savings of computer core and time for important problems

    The ABCD of usability testing

    Get PDF
    We introduce a methodology for tracking and auditing feedback, errors and suggestions for software packages. This short paper describes how we innovate on the evaluation mechanism, introducing an (Antecedent, Barrier, Consequence and Development) ABCD form, embedded within an eParticipation platform to enable end users to easily report on any usability issues. This methodology will be utilised to improve the STEP cloud eParticipation platform (part of the current STEP Horizon2020 project http://step4youth.eu. The platform is currently being piloted in real life contexts, with the participation of public authorities that are integrating the eParticipation platform into their regular decision-making practices. The project is involving young people, through engagement and motivation strategies and giving them a voice in Environmental decision making at the local level. The pilot evaluation aims to demonstrate how open engagement needs to be embedded within public sector processes and the usability methodology reported here will help to identify the key barriers for wide scale deployment of the platform

    Fast fluorescence microscopy for imaging the dynamics of embryonic development

    Get PDF
    Live imaging has gained a pivotal role in developmental biology since it increasingly allows real-time observation of cell behavior in intact organisms. Microscopes that can capture the dynamics of ever-faster biological events, fluorescent markers optimal for in vivo imaging, and, finally, adapted reconstruction and analysis programs to complete data flow all contribute to this success. Focusing on temporal resolution, we discuss how fast imaging can be achieved with minimal prejudice to spatial resolution, photon count, or to reliably and automatically analyze images. In particular, we show how integrated approaches to imaging that combine bright fluorescent probes, fast microscopes, and custom post-processing techniques can address the kinetics of biological systems at multiple scales. Finally, we discuss remaining challenges and opportunities for further advances in this field

    Esperanto for histones : CENP-A, not CenH3, is the centromeric histone H3 variant

    Get PDF
    The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres

    Visualization of Biomedical Data

    Full text link
    The rapid increase in volume and complexity of biomedical data requires changes in research, communication, training, and clinical practices. This includes learning how to effectively integrate automated analysis with high-data-density visualizations that clearly express complex phenomena. In this review, we summarize key principles and resources from data visualization research that address this difficult challenge. We then survey how visualization is being used in a selection of emerging biomedical research areas, including: 3D genomics, single-cell RNA-seq, the protein structure universe, phosphoproteomics, augmented-reality surgery, and metagenomics. While specific areas need highly tailored visualization tools, there are common visualization challenges that can be addressed with general methods and strategies. Unfortunately, poor visualization practices are also common; however, there are good prospects for improvements and innovations that will revolutionize how we see and think about our data. We outline initiatives aimed at fostering these improvements via better tools, peer-to-peer learning, and interdisciplinary collaboration with computer scientists, science communicators, and graphic designers
    corecore